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On the advection of spherical and non-spherical
particles in a non-uniform flow

By M. R. MAXEY

Center for Fluid Mechanics, Turbulence and Computation, Brown University,
Providence, Rhode Island 02912, U.S.A.

p
A
y
L

/

/ \\ \\

AL B

Small spherical particles when introduced into a non-uniform or unsteady flow are
usually subject to inertial effects, either of the particle mass or of the fluid added-
mass, and the gravitational settling. Small non-spherical particles, even when
inertial effects are negligible, turn in response to the local fluid velocity gradients and
the settling velocity of a particle varies with its orientation. These features are
distinct from the response of lagrangian elements which simply move with the local
fluid velocity. In this paper these different responses for small, stokesian particles are
considered for some example non-uniform laminar flows. It is noted that this added
feature may lead to chaotic particle motion where the motion of lagrangian elements
is regular, and conversely regular motion where there is chaotic advection of
lagrangian elements.
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The study of the lagrangian motion of fluid elements has long been a focus of work
on mixing processes. The mean concentration of a passive scalar contaminant subject
to random stirring may effectively be estimated from the lagrangian statistics of fluid
motion. This is exemplified by the paper of Taylor (1921) who showed how an
effective turbulent dispersion coefficient would result from the action of stationary,
homogeneous turbulence on fluid elements. These ideas were developed further by
Batchelor (1949), Batchelor & Townsend (1956) and Corrsin (1952) among others.
The underlying principle is that turbulent mixing is a much more effective process
than molecular diffusion for a scalar contaminant and that in determining at least
the mean concentration molecular diffusion may be ignored. Under this assumption
the local concentration ¢(x,¢) in an incompressible flow u(x, ¢) is determined solely by

the advection of the flow,
Oc/0t+u-Ve = 0. (1)

Thus the amount of contaminant contained in a lagrangian fluid element remains

2 constant as the element moves through the flow. The evaluation of the mean
> 'S concentration ¢, ensemble averaged over different realizations of the turbulent flow,
® : becomes now a problem of determining the probability density function that the
e fluid element at position x at time ¢ originated at the point @ when the contaminant
= O was introduced. In this way

T O

=w

e(x,t) = fc(a,O)p(X(O) =a|X(t) =x)d3a, (2)

expressed in terms of the backwards probability distribution (Corrsin 1952). This
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relation has prompted much work in the analysis of the lagrangian statistics of
turbulent flows, of which some recent work is discussed in the companion paper by
S. B. Pope (this issue).

In recent years effective stirring by chaotic advection has been observed even for
laminar flows, a phenomenon sometimes referred to as lagrangian turbulence.
Notable contributions in this subject have been made by Aref (1984), Chaiken et al.
(1986), Dombre et al. (1986) and Ottino (1989) to mention but a few. This observation
has broadened the range of contexts in which random stirring is considered and led
to the development of new ideas about mixing in general. The position X{(t) of a
lagrangian fluid element is determined by the condition that the element moves with

the local fluid velocit,
e local fluid velocity dX/dt = u(x = X(t),1). ¥

The dependence of fluid velocity on position is often nonlinear and complex, despite
the apparent simplicity of (3). Viewed as a dynamical system (3) represents a
nonlinear third-order system, which if the flow is unsteady is also non-autonomous.
Such a system is ripe for chaos (Guckenheimer & Holmes 1983; Lichtenberg &
Lieberman 1983) as found by Aref (1984) for an unsteady, two dimensional flow and
by Dombre et al. (1986) for the steady, three-dimensional 4BC flow. Characteristics
of the irregular chaotic motion are sensitivity to the initial position of the fluid
element and the rapid rate at which neighbouring elements separate. Viewed in this
light chaotic advection may turn out to be a common feature. Steady, two-
dimensional flows give rise only to a second-order, autonomous system which has
regular solutions. As noted by Aref (1984), in these flows the stream function plays
the role of a hamiltonian and the system is integrable. A review of recent work on the
chaotic advection of fluid elements by Aref is included in this issue.

Another important aspect of mixing is the transport of small discrete particles by
a flow. These particles may be solid aerosol particles in air, water droplets in air,
spray droplets in a gas flow, crystals in a liquid melt, or vapour bubbles in liquids
for example. Unlike a scalar contaminant these particles are not subject to molecular
diffusion, though they may be influenced by brownian motion for very small sizes.
The questions that now arise are: What is the average number of particles found in
some sample volume ¢ or What is the probability distribution for the number of
particles ? At low number densities and mass-loading (the mass of particles compared
to the mass of fluid in some reference volume) the particles will have no dynamical
influence on the flow and respond passively to the surrounding flow conditions. At
low number densities the interactions of particles, such as coagulation through
particle collisions, may be neglected and the transport of each particle may be
considered separately. Under these conditions each particle retains its own identity.

The motion of small discrete particles is determined by the resultant force of the
fluid on the particle, the effect of gravitational settling if important, and inertia. The
response of a particle to the surrounding flow is more involved than the simple
response of a lagrangian fluid element (3). This added complexity introduces new and
interesting phenomena for the motion of particles in both laminar and turbulent
flows. The aim of this paper is to review some specific features of the motion of small
particles that have been found to occur, contrasting these with the comparable
behaviour of lagrangian fluid elements. The discussion will be limited to laminar
flows in which chaotic motion may or may not occur. The results are also indicative
of the characteristics of particle motion in turbulence, though a discussion of this will
not be included here.

Phil. Trans. R. Soc. Lond. A (1990)
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In the first part of this paper the motion of spherical particles is considered,
including the influence of gravitational settling and inertia, either of the particle or
of the surrounding fluid. In the second part aspects of the motion of non-spherical
particles are discussed, specifically for spheroidally shaped particles subject to
gravitational settling. In both cases attention will be restricted to particles smaller
in size than the smallest length scale of variation in the flow and sufficiently small
that the relative motion of the particle to the surrounding fluid satisfies the
conditions for a local Stokes flow. On the other hand the particles will be considered
to be sufficiently large that brownian motion is not a significant factor. This may
appear to be a narrow range of particle sizes but for say water droplets in low speed
air flows, as in the atmosphere, would include particle radii of 5-50 pm. An excellent
survey of particle characteristics is given by Clift et al. (1978), and a comprehensive
review for atmospheric conditions is given by Pruppacher & Klett (1978).

2. Motion of a spherical particle

The motion of a small rigid sphere of mass m, and radius @ is governed by the
balance of forces of the fluid on the particle, of gravity and the inertial acceleration
of the particle. An equation of motion derived under general conditions for a non-
uniform or unsteady flow (Maxey & Riley 1983) is

v Du d
Mo = (mp—mp)g+mFﬁ—%’mF$ (V—u(X(t), t) — £a2Vu)

— 6rapQ(t)—bnau f g dQ/dr_
o (mv(t—T))?

(4)

where V(t) is the particle velocity, X(¢) the position of the particle’s centre and
Q(t) = V(t)—u(X(t), t) —§a*V?u. (5)

In this equation of motion (4) g is the acceleration due to gravity, my is the mass of
displaced fluid, and x and v are respectively the dynamic and kinematic viscosities
of the surrounding fluid. The derivative Du/Dt is evaluated at the current particle
position X(¢) and is the acceleration of a corresponding fluid element in the ambient
flow at this point. This term represents the fluid force on the particle from the
undisturbed ambient flow. The other terms in (4) besides the effect of gravity and
buoyancy represent the added-mass contribution, the Stokes drag force and the
Basset history term modified appropriately (5) by the Faxen corrections for a non-
uniform flow. This equation is based on the premise that the particle is much smaller
than the length scale L for variation of the flow, a/L < 1 and that if U, is a velocity
scale for the flow and W, a velocity scale for the relative motion of the particle to the
surrounding fluid, the corresponding Reynolds numbers are small,

aWy/v <1, a*U,/Lv < 1. (6)

Associated with the inclusion of the Basset history term in the form here is the initial
condition for the particle velocity that Q(¢t = 0) vanishes.

The response of a spherical particle as given by (4) is more complex than the simple
motion of a lagrangian fluid element (3), with a variety of additional physical effects

Phil. Trans. R. Soc. Lond. A (1990)
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included. For various situations this response is simpler. The mass of an aerosol
particle, such as a spherical water droplet in air, is generally much greater than that
of the displaced fluid. Terms involving my may be neglected and it is common
practice for small particles to neglect the Faxen correction and Basset history term,
unless one is concerned with the very initial stage of particle motion (Clift et al. 1978).
The motion of an aerosol particle is given by

my, dV/dt = 6rap(u(X(t),t)— V(1)) +m, g, (7)

where the dominant balance is of particle inertia, fluid drag force and gravitational
settling. Although not strictly consistent it is convenient in determining the response
of a general spherical particle also to neglect the Faxen and Basset terms and work
with the simplified equation of motion

(my,+3my)dV/dt = (m,—my) g+ 6nau(u(X(t),t)— V(t))
+3mpOu/t+mp(u+iV)-Vu. (8)

The assumption of low Reynolds number (6) leads to some arbitrariness in how the
added-mass term is represented in (8) and other authors have used different forms
(Auton 1983).

The discussion of spherical particles will be based on the equations of motion (7),
(8). In still fluid a particle will eventually move with the Stokes settling velocity W®
determined by the equilibrium balance of gravitational settling and fluid drag forces

W = (m,—my) g/6nap. 9)

The timescale on which the particle responds to changes in the local flow is
determined by the inertia and drag forces and is given by 1/a, where

o = 6rau/(m,+3myg). (10)
In terms of o, W® and the mass ratio parameter R,
R =myg/(m,+img), (11)
the equation of motion (8) becomes
dV/dt = a[u(X(t),t)— V() + WS+ 3R u/0t+ R(u+iV) Vu. (12)

This will allow us to consider both aerosol particles, my and R are both zero, and
spherical vapour bubbles in liquids, m,, is zero and E = 2. That the Stokes drag law
for a rigid sphere may be applied to a small bubble may be surprising. But it is
common experience in anything but the cleanest liquids that surfactants accumulate
on the bubble surface leading to a bubble rise velocity more accurately given by (9)
than the corresponding Hadamard-Rybczinski result. This is discussed by Levich
(1962).

A number of observations may be made directly on the basis of (12). First,
the ratio of the inertial response time 1/a to the timescale on which the local flow
u(X(t),t) changes determines the extent to which the particle responds to these
changes. The non-dimensional ratio &/ = al /U, or inverse of the Stokes number, is
a useful indicator of this. For very large values of .« the particle response is rapid and
at each instant there is a quasi-steady balance, which from (12) is

V(t) = u(X(t), t)+ WS, (13)
Phil. Trans. R. Soc. Lond. A (1990)
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At each instant the particle velocity is the sum of the local fluid velocity and the
Stokes settling velocity, and is simply a function of the particle position. This type
of response is very similar to that of a lagrangian fluid element (3), as will be seen
later.

Secondly, the motion of a spherical particle generally requires both the current
position X(¢) and velocity V(¢) to be specified to evaluate the particle acceleration
(12). A complete analysis involves the motion in a six-dimensional phase space of
points (X(¢), V(¢)). Within this phase space the divergence,

oV, /oV,+ 0V, /X, = —3a

is strictly negative indicating that the motion will eventually be restricted to some
stable attractor set within the phase space. Physically this is consistent with the
observation that in still fluid a particle will eventually settle at the Stokes settling
velocity W®, whatever the initial particle velocity, or in a more general context that
the particle motion has a limited sensitivity to the initial velocity.

Between these two one often encounters flows where the inertia parameter .o/ has
moderate to large values, where it is of some significance but not of major
importance. It is then very useful to simplify (12) to obtain the particle velocity V
again as a function of particle position alone while retaining a correction for inertia.
A first approximation is that the particle velocity is given by (13), which substituted
back into (12) yields the corrected form

V(t) = u(X(t), ) + W —o'(0u/ot + (u+ W) Vu)
+(3R/20) Du/Dt+ (R/20) W-Vu. (14)

The interesting feature that results from this specification (14) is that the divergence
of the particle velocity field is non-zero even if the surrounding flow u is
incompressible. The divergence is (Maxey 1987 a)

Ou,; Ou;
V=g l@R—1)—
V- V=al(3R ”(axjax,.)’ (15)
Ou,0u;  1(0u; Ou;\* 1(0u, au]->2
—_— = - — _— —_————_—— . 1
and Oz, 0z, 4(ax,.+axi 4\0x; Ox, (16)

This divergence may be positive or negative. For a particle denser than the
surrounding fluid, m, > my or R < £, the divergence is positive in regions of the flow
dominated by high vorticity and negative in regions dominated by high strain rate.
There is then a bias mechanism and in any flow the particles will tend to accumulate
in regions of high strain rate. Conversely, particles such as bubbles which are less
dense than the surrounding fluid, m, < my, will have a divergence of the opposite
sign and show a tendency to accumulate in regions of high vorticity. This bias
mechanism has been noted for aerosol particles by Maxey (1987 b) and by McLaughlin
(1988), Ferndndez de La Mora & Riesco-Chueca (1988), among others. It is linked to
how quickly a particle with inertia may turn in following a curved path in the flow.
It is easily illustrated by considering how a particle would move close to an isolated
vortex core or in a region of pure straining flow. This behaviour is in contrast to the
motion of lagrangian fluid elements which show no such bias in an incompressible
flow, or of those particles with negligible inertial effects (13).

Phil. Trans. R. Soc. Lond. A (1990)
16 Vol. 333. A
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0 1

-]

Figure 1. Sketch of the velocity profiles for the left-hand cell, and streamlines for the right-hand
cell, of the periodic cellular flow field. Arrows show the direction of flow.

3. Spherical particles in a cellular flow

The significance of these mechanisms on the motion of spherical particles is best
understood by considering the motion in some specific flows. In this paper the steady
two-dimensional flow specified by the stream function ¥ (x,,x,) for a cellular flow,

Y(2y,25) = Uy Lsin (2,/L) sin (/L) (17)

is used as a standard example. The streamlines and an outline of the velocity profile
are shown in figure 1. The flow extends periodically in both «, and «, directions, and
satisfies the inviscid Euler equations for steady flow.  The flow (7) is also found in
thermal convection with free-slip boundaries. A lagrangian fluid element (3)
introduced into this flow will follow ‘a simple, closed path corresponding to some
streamline of the steady flow and the value of ¥ will be a constant of the motion.

Stommel (1949) gave results for the motion of spherical particles, with negligible
inertia yet subject to gravitational settling. The motion of these particles is governed
by (13) and is regular like that of the fluid elements. The main observation Stommel
made was that for cells aligned vertically, so that g is parallel to the x,-axis and W®
is (0, W®), some particles may be held indefinitely in suspension by the flow provided
the maximum upflow, U, exceeds the terminal fall speed W® as given in (9). Some
particle paths are shown in figure 2. The particles retained in the flow follow closed
paths, being swept up by the flow near the cell boundary at X, = 0. There are static
equilibrium points along X, = 0 at points where X, = Larcsin (W®/T}), of which
there are two in the cell shown. There is a bounding path emanating from the
equilibrium points separating the flow into two regions, one where particles are
suspended and the other where particles settle out along open paths. The extent of
the suspension region decreases as W® /U, approaches unity.

The motion of aerosol particles (7) in the cellular flow (17) has been studied by
Maxey & Corrsin (1986) and for more general spherical particles (12) by Maxey
(1987a). Some of the main results are included here, and these references may be

consulted for further details. The first observation is that aerosol particles are no
longer suspended by the flow, rather partlcles spiral out of the upflow regions and all
eventually settle through the downflow regions of successive cells. Sample particle

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 2. Trajectories of spherical particles settling under gravity in the cellular flow field according
to (13), without inertial effects. W® /U, = 0.5; broken line shows bounding trajectory for the
trapping region. Arrows on the cell boundaries indicate the circulation in each cell.

—_—
0 R0

|\ ©

Figure 3. Sample trajectories for aerosol particles (R = 0) settling under gravity in a cellular flow.
Stokes settling velocity W® = 0.50], inertia parameter 4 = 5. The arrows on the trajectories are
drawn at intervals of 2L /U ; the arrows on the cell boundaries indicate the circulation in each cell.

trajectories are shown in figure 3. The second observation is that eventually all the
particle trajectories merge into isolated paths which settle through the cells. This
feature is illustrated by the particle position plot shown in figure 4. To obtain this
plot particles were introduced into the flow on a regular 10 x 10 grid of equally spaced
mesh points within each cell and their motion followed. This position of each particle
was plotted at ¢ = 80L/Uj,, and use was made of the periodic nature of the flow to
reduce the position coordinates to lie in the range 0 < z,,z, < 2nL. The plot shows
how the particles have accumulated along narrowly defined curves. At later times the
position plots have the same character and are more sharply defined. This indicates
an asymptotic convergence, and since the particles remain on these curves
subsequently the curves correspond to segments of an asymptotic particle trajectory.

PFHil. Trans. R. Soc. Lond. A (1990)
16-2
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Figure 4. Particle position plots at ¢t = 80L/Uj, for an initially uniform array of
particles settling under gravity; W® = 0.50,, & =5, R = 0.

The tendency for aerosol particles to accumulate along selected paths was found
to be a general feature for a wide range of parameters. Particles, whose Stokes
settling velocity W® exceeded U, tended to collect along the vertical cell boundaries
and settle out along these. Even as particle inertia was reduced, increasing the value
of o/, the same tendency developed only taking longer to become established. The
same features were obtained using either the full equation (7) or the corresponding
approximate form (14) with R = 0. The same general behaviour was further observed
for general spherical particles (12) which were more dense than the surrounding fluid,
my > M.

The bubble particles, m, = 0, or R = 2, had a somewhat different response to the
cellular flow. Unlike aerosol particles, bubble particles tend to rise through a fluid.
After taking account of this change in the Stokes velocity (9), one finds as before that
if the flow speed U, exceeds | W®)| there are static equilibrium points for the bubbles,
this time in the downflow regions of the cells. Along X, = 0, equilibrium points exist
at values of x, where

|W®)| /U, = —sin (X,/L)+ R/ sin (X,/L) cos (X, /L).

These points are unstable for all values of B. Within each cell there is an interior
equilibrium point, which is marked in figure 2 for the particle without inertia. This
equilibrium point is linearly stable for a bubble particle but unstable for an aerosol
particle. The stability of these interior points is illustrated by the sample particle
trajectories of figure 5, where it is evident that particles are moving closer to these
points and being permanently trapped. Also shown are bubbles rising continuously
through the cellular flow.

A particle position plot corresponding to figure 4, but for bubble particles is shown
in figure 6. Here the flow speed exceeds the bubble rise velocity and four interior
equilibrium points are evident in the diagram. A substantial number of particles
have been trapped at these equilibrium points, while the others continue to rise and
accumulate along isolated curves rising through the cell. For more rapidly rising

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 5. Sample trajectories for bubble particles (R = 2) rising through the cellular flow field due
to buoyancy. Stokes terminal speed | W®| = 0.5, for bubble rise, inertia parameter &/ = 10. Arrows
on the trajectories are drawn at intervals of 2L/Uj.
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Figure 6. Particle position plots at ¢ = 100L /U, for an initially uniform array of bubble particles
(R = 2). Stokes terminal rise speed |W®| = 0.8, inertia parameter &/ = 10.

bubbles, no equilibrium points are possible and all the particles collect along such
isolated curves, rising through the cell.

In summary, at this point, it is apparent that the inertia associated with the
particle motion leads to the tendency for the individual trajectories of spherical
particles to merge into isolated paths. There is organization of the motion through
the bias mechanisms noted in (15) and (16), which goes beyond what may otherwise
be expected to occur simply due to inertia.

Phil. Trans. R. Soc. Lond. A (1990)
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It may be noted that the vorticity of the cellular flow is strongest towards the
centre of each cell, while the rate of strain dominates on the cell boundaries. The
stability of the interior equilibrium points for a bubble is consistent with the bias
mechanism and the effect of vorticity. The vortex trapping of bubbles through the
influence of added-mass effects has been reported by Auton (1983) and Thomas et al.
(1983, 1984).

4. Spherical particles and lagrangian turbulence

The cellular flow field just considered was a steady, two-dimensional flow with
regular motion of the lagrangian fluid elements. The response of the spherical
particles was similarly regular with a further high degree of organization to the
particle trajectories. As it has been observed that several unsteady or three-
dimensional laminar flows have been found to produce chaotic motion of the
lagrangian fluid elements, an interesting question is whether spherical particles
would be similarly affected by such a flow.

One study by Smith & Spiegel (1985) considered the motion of sedimenting
particles for which inertial effects were negligible. They examined the motion of
spherical particles given by (13) in an unsteady cellular flow field specified by the
stream function

Yy, 2y, t) = (1/m) [1+€cos (ot)]sin (na,) sin (Tx,), (19)

as opposed to the steady flow (17). This system is hamiltonian, with one degree of
freedom and the particle stream function ¢, defined by

¢ = ¢‘—W(S) Xy, (20)
and where dX,/dt = 0¢/0x,, dX,/dt =—0¢/0x, (21)

plays the role of a hamiltonian (Aref 1984). For non-zero values of ¢ and o the flow
is unsteady and the hamiltonian time-dependent, which introduces then the
possibility of chaotic motion. This was indeed observed and the flow was found to
contain islands of regular motion where particles were permanently retained, outside
of which the particles settled in a chaotic manner. The authors found similar
behaviour for a range of values of ¢ and o, and further analysed the fractal nature
of initial clusters of particles as they are advected by the flow. Unsteady flows similar
to (19) have been observed by Solomon & Gollub (1988) for unsteady rolls in
experiments on thermal convection between horizontal plane boundaries. They have
also reported on the chaotic advection of fluid elements in such flows.

The inclusion of gravitational settling alone, as in (13), produces particle motion
very similar to that of lagrangian fluid elements except that the flow is changed by
the addition of a uniform, constant velocity W®. The methods of analysis and the
sources of chaotic motion are essentially equivalent.

More recently McLaughlin (1988) has examined the motion of spherical particles
in the three-dimensional ABC flow of Arnold (1965), including both gravitational
settling and inertial effects. The ABC flows are steady, incompressible solutions of
the Euler equations and are examples of Beltrami flow for which the vorticity and
velocity vectors are parallel to each other. The flow is

u, = A sin (2nx,) + C cos (27x,), (22a)
U, = Bsin (2nx,)+ A cos (2nzx,), (22b)
uy = Csin (2nx,) + B cos (2w, ). (22¢)
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The standard condition 1 =4 = B = (' > 0 is usually applied. Dombre et al. (1986)
have found for a range of parameter values of B, C that this flow leads to the chaotic
advection of fluid elements. For the specific value of ' = 0 the system is integrable
and there is no chaotic advection. The flow consists of six principal vortices, two of
which are aligned in each of the three directions. As C is increased regions of chaotic
advection are observed in the flow.

In this study McLaughlin (1988) considered particles subject only to weak inertial
effects such that the departures in the particle velocity from the local fluid velocity
could be represented by an equation similar to (14). This approximate representation
was derived from (12) with the additional approximation that Du/Dt was equal to
du/d¢ to the degree of accuracy of the Stokes flow assumption (6). This leads to the
modified form of (12)

dV/dt = a[u(X(¢),t)— V+ WS+ 3R du/dt,
which in turn leads to the modified approximate form for weak inertial effects
V=uX@t),t)+ WO +a'(3R—1)du/dt, (23)

in the present notation. With length and velocity scales implied by (22) and the
condition 4 = 1, the group a (3R —1) corresponds to the parameter y/2n used by
McLaughlin.

Without gravitational settling a flow exhibiting lagrangian turbulence, B? = 0.5001
and C? = 0.0002, led to the eventual capture of bubble-like particles by one of the
principal vortices. The value of v was 0.0628. This is similar to the vortex capture
of bubbles discussed at the end of the last section and noted by Thomas et al. (1983,
1984). No persistent chaotic motion was observed. For aerosol particles or particles
more dense than the fluid, y = —0.0628, chaotic motion was only observed for very
limited ranges of values of B and C. Generally chaotic motion was transient and the
particles were captured by periodic or quasiperiodic trajectories. No chaotic
attractors were found for (B*+(C?) < 1.

With the introduction of gravitational settling, but no inertia (y = 0), limited
regions of permanent particle suspension were possible, surrounding by larger regions
where particles settled out in a chaotic motion. With the inclusion of inertia
(y = —0.0628) these regions of permanent suspension disappeared, as was found for
the steady cellular flow. Similarly the chaotic sedimentation was eliminated for most
values of B,C and the particle trajectories converged to asymptotic periodic or
quasiperiodic paths. Interestingly some of these asymptotic paths may hold a
particle in permanent suspension within the flow.

The results of this study indicate that inertial effects of the particle eliminate, or
severely reduce, the chaotic advection of fluid elements at least in the limit of weak
particle inertia. This is supported by some results of Wang et al. (1990) also for the
ABC flow system. This may well be true of other flows exhibiting lagrangian
turbulence, yet this remains to be established.

5. Motion of non-spherical particles

Departures from a spherical shape introduce new features to the motion of a
particle. One must find not only the velocity of the particle but also the angular
velocity 2(¢) to determine the motion. Further the particle orientation is coupled to
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the particle velocity through changes in the gravitational settling velocity. The
simplest non-spherical shape to consider is that of an orthotropic, axisymmetric
particle of which the spheroid or ellipsoid of revolution is an example. The motion of
a small neutrally buoyant ellipsoid in a steady uniform shear flow was studied by
Jeffery (1922), who developed the equations governing the particle rotation in a flow
with uniform velocity gradients. Extension to these results are given by Bretherton
(1962) and Happel & Brenner (1965) for particles within the Stokes régime.

When a small, isolated rigid particle is introduced into a flow field u(x,?), it
produces a local disturbance flow v(x,t) such that the sum of the two forms the
resultant flow. Away from the particle » becomes negligible while on the particle
surface (v+u) must satisfy no-slip boundary conditions. For sufficiently small
particles the variations in u over the particle surface are well represented by the local
value of Vu, or equivalently the local fluid vorticity @ and rate of strain tensor E.
Under conditions similar to (6) the disturbance flow v is a Stokes flow and the
resultant fluid force F on the particle is linearly related to the relative velocity of the
particle to the surrounding fluid, (V—u(X(¢),¢)) and to @o(X(t),t) and E(X(¢),t). The
resultant fluid torque G on the particle is similarly related. The reflexional symmetry
of orthotropic particles leads to

k= ﬂKij(uj(X(t), ) — V](t))7 (24)
Gy = pRyow;— Q)+ uD iy By, (25)

where R and K are symmetric and D is a pseudo-tensor symmetric in j, £ (Happel
& Brenner 1965). For particles of uniform composition the principal axes of R and
K coincide with the symmetry axes of the particle, which for an axisymmetric
particle consist of the unit vector m parallel to the axis of symmetry and two
orthogonal unit vectors normal to m.

Consistent with the assumption of quasi-steady Stokes flow for v no account will
be made here of the effects of particle or fluid inertia. The particle response to
changes in the local flow conditions is assumed to be rapid, equivalent to that
leading to (13), and the motion is determined by the conditions that at each instant
the net force F+mg on the particle, and the net torque G vanish. The former leads
to the specification of the particle velocity as

V(t) = w(X(t), t) + Wi(&-m) m+ W,(¢ — & mm), (26)

where ¢ is the unit vector g/ |g|. In still fluid the particle has two principal fall speeds,
W, for settling parallel to the axis of symmetry and W, for settling transverse to the
symmetry axis. In general W, and W, differ from each other, and the particle velocity
V (26) is coupled to the orientation m through this difference. In the absence of
gravitational settling the particle moves with the local fluid velocity.

The rotation of the particle is specified by the condition of no net torque

dm/dt = 2 x m, (27)
Q) = io(X(¢), (t)+Dm x (E-m). (28)

The particle turns in response to both the local vorticity and the local rate of strain.
In a flow that is purely rotational, E = 0, the particle will rotate indefinitely ; but in
an irrotational straining flow will rotate only until the symmetry axis is aligned with
one of the principal axes of strain-rate.
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Figure 7. The ratio of the terminal fall speeds 4 = W,/ W, for a spheroidal particle with aspect ratio
A. The ratio A =1 for a sphere, A < 1 for an oblate spheroid and A > 1 for a prolate spheroid.
Results based on Stokes flow solutions. (a) W,/W,; (b) W,/ V., ; (¢) 4.

Values for the parameters W,, W, and D may be assigned for spheroidal particles in
terms of the aspect ratio A using standard relations (Bretherton, 1962). These are
shown in figure 7 for both prolate (A > 1) and oblate (A < 1) shapes. The spherically
averaged fall speed V,, for a particle of random orientation is introduced

Vo = 3(Wi +2W,). (29)
The value of D is
D= (A2—1)/(A%+1). (30)

This is positive for a prolate shape indicating that the spheroid will turn in an
irrotational flow till the axis m is aligned with the direction of greatest positive
strain-rate. The divergence of the velocity in the phase (X(¢), m(t)) reflects this
preferred alignment and is equal to (—5Dm-E-m).

In a steady, uniform shear flow, without gravitational settling, Jeffery (1922)
showed that the particles rotate in a regular periodic manner. The equations (27),
(28) for particle rotation are formally third order, but the constraint that m is a unit
vector means that there are only two independent equations. Under steady uniform
conditions, where @ and E are constants, the possibility of chaotic orientations is
thus precluded.

6. Non-spherical particles in a cellular flow

In this section we now consider the motion of sedimenting nonspherical particles
in the cellular flow (17) discussed previously. Here I draw on the preliminary results
reported by Mallier & Maxey (1990) and the more recent work by Shin (1990). The
particle motion is specified by the equations (26)—(28) for V(¢) and the orientation
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Figure 8. The trajectory of a spheroidal particle suspended by the cellular flow within the region
0 < x;,2, < 1:(a)aspect ratio A = 2, spherically averaged fall speed V,, = 0.25, particle introduced
at (X;,X,) = (0.6875, 0.4375); (b) A = 10, V= 0.25, particle initial position (0.5625, 0.4375).

m(t) with the fluid velocity, vorticity and rate of strain corresponding to (17). The
direction of g is taken to be in the positive x,-direction, as before, for vertically
aligned cells. The scales L, U, in (17) are chosen to be 1/m, 1 respectively. The full
system is quite complex and contains many new features. To obtain a better physical
understanding of the processes a restricted problem is considered where m is
constrained to lie in the x,, z,-plane with m, = 0. Mallier & Maxey (1990) have noted
that if m, is zero initially then the axis will remain in the plane thereafter, and further
that V, is zero. Preliminary computations, supported by the later work of Shin
(1990), showed that the results of the restricted planar motion were similar in
character to that of the full system.

The particle orientation m may be characterized by the angle 6 that the particle
axis make with the x,-axis in this restricted system. The components of m are
(cos f,sin 6,0) and the equations governing the motion are

V, = sin X, cos nX, + (W, — W,) sin 6 cos 0, (31)
V, = —cos X, sinnX, + W, + (W, — W,) sin? 6, (32)
d6/dt = msin X, sin X, —2D7 cos X, cos tX, sin 6 cos 6. (33)

The first difference from the motion of spherical particles, discussed in §3, is that
now at an equilibrium point the particle may not turn. This eliminates the
equilibrium points in the interior of the cells, and along the X, = 0 cell boundary
equilibrium points exist at points where sin X, = W, for 6 = 0, or at sinnX, =W,
for 6 = {n. Previously the particle orientation was of no significance. For a sphere
W, W, are the same. The permanent suspension of spheroidal particles by the flow,
similar to that shown in figure 2, is still possible. This is illustrated by the regular
paths in the x,,x,-plane shown by figure 8. The paths are no longer simple closed
curves, but show the effects of the particle turning in response to the local vorticity
and rate of strain, and the influence of this back on the particle velocity. The region
of the flow supporting particle suspension is significantly reduced.

Outside of the suspension regions particles generally exhibit a chaotic tumbling
motion. The paths in the x;, z,-plane and the corresponding particle orientations of
typical particles settling through the flow are shown in figure 9. For a spherical
particle settling through the flow the path is periodic in the x,-direction, but the
orientation is quasi-periodic due to the variations in vorticity and rate of strain in
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Figure 9. The trajectory of a spheroidal particle settling through the cellular flow showing the path
(X,,X,) and particle orientation m = (cosf,sin6): (a) aspect ratio A =2, V, = 0.75; (b) A = 10,
V, = 0.75. Boxes drawn to mark unit cells.

Figure 10. Poincaré sections for non-spherical particles subject to gravitational settling with
principal fall speeds W, = 0.5 and W, = 0.4. No coupling with the rate of strain, D = 0. Sections
based on intersections with 6 = 0. Note that the X,-axis is now drawn up the page.
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0 T T T
e 1

Figure 11. Poincaré section for the same conditions as figure 10 showing intersection
points for a particle in the regular settling region.

(33). For a spheroidal particle the coupling of orientation and velocity leads to a
chaotic behaviour in this region of the flow. This is confirmed by the broad spectrum
of the time series for m,(¢).

Shin (1990) has found that chaotic tumbling is still a feature of the particle motion
even if D is zero and the particle turns only in response to the local vorticity. The
character of the motion appears to be much the same. The system of equations
(31)—(33) are however now volume preserving in phase space. The Poincaré section
for such a system based on the intersections with ¢ = 0 (figure 10) shows quite well
the region of the flow where particles are suspended and have regular motion.
Outside this region the chaos is clearly evident. The intersection points in this latter
part of the flow were generated by a single particle trajectory with explicit use being
made of the periodicity of the flow. Of interest is that the particle trajectories passing
close to the x; = 0 cell boundary are chaotic. In figure 10 there are clear bands where
no intersection point was found. A separate Poincaré section for this region (figure
11) shows that there is regular motion here and the particles settle without chaotic
tumbling. Within the region of regular motion noted here the Lyapunov exponents
were found to be indeed zero asymptotically, while in the region of chaotic tumbling
positive exponent values were obtained.

The assertion that the general character of the motion is similar whether D is zero
or not may be viewed by a comparison of the Poincaré sections of figure 12. These
were obtained for identical conditions except that in the first D = 0 while in the
second D = 0.5. Evident are the regions of chaotic settling, regular particle suspension
and regular particle settling.
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@ ®)

0 ' ' 1 ' l l 20 I I ' 1 ) N 2
X X
Figure 12. Poincaré sections for non-spherical particles intersecting at # = 0, showing the influence

of strain-rate coupling. Principal fall speeds W, = 0.6, W, = 0.5. Initial points at X; = 0.05,X, = 0.5,
0=0:(a) D=0, (b) D=0.5.

The results summarized here suggest that for the cellular flow field chaotic settling
will be a feature of all non-spherical motion, with regions of regular motion for
particle suspension and regions associated with regular settling motion. The extent
of each of these will depend on the aspect ratio of the particle and the departure from
a spherical shape. The motion of a sphere is of course completely regular. Further
work will be required to substantiate this picture.

7. Conclusion

Several features of the motion of discrete spherical and non-spherical particles
have been discussed here and how these compare with the motion of lagrangian fluid
elements. In the cellular flows the motion of both lagrangian fluid elements and
spherical particles was regular, with the influence of inertial effects leading to an
organized structure of preferred particle trajectories. The motion of non-spherical
particles, subject to gravitational settling but not to inertial effects, by contrast
could be chaotic. In the ABC flows inertial effects on the motion of spherical particles
produced regular particle trajectories eventually, even if the motion of lagrangian
fluid elements was chaotic. The general features that seem to be emerging are that
inertial effects, when they are weak or moderate, inhibit chaotic mixing while
tumbling due to a non-spherical shape promotes chaotic mixing. Some evidence,
however, was found in the results of Maxey & Corrsin (1986) that very strong particle
inertia may also promote disorganized particle motion. In any given flow system it
would appear that a range of behaviour is possible depending on the response of the
particle to the surrounding flow conditions.

Beyond their immediate contexts, the results given here indicate features of
particle motion that may be expected to occur in other more complex flow systems,
such as turbulent flows.
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